The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions.

نویسندگان

  • T K Kerppola
  • T Curran
چکیده

Transcription factor-induced DNA bending is essential for the assembly of active transcription complexes at many promoters. However, most eukaryotic transcription regulatory proteins have modular DNA-binding and activation domains, which appeared to exclude DNA bending as a mechanism of transcription activation by these proteins. We show that the transcription activation domains of Fos and Jun induce DNA bending. In chimeric proteins, the transcription activation domains induce DNA bending independent of the DNA-binding domains. DNA bending by the chimeric proteins is directed diametrically away from the transcription activation domains. Therefore, the opposite directions of DNA bending by Fos and Jun are caused, in part, by the opposite locations of the transcription activation domains relative to the DNA-binding domains in these proteins. DNA bending is reduced in the presence of multivalent cations, indicating that electrostatic interactions contribute to DNA bending by Fos and Jun. Consequently, regions outside the minimal DNA-binding domain can influence DNA structure, and may thereby contribute to the architectural reorganization of the promoter region required for gene activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of cooperative DNA bending and oriented heterodimer binding in the NFAT1-Fos-Jun-ARRE2 complex.

Cooperative DNA binding by transcription factors that bind to separate recognition sites is likely to require bending of intervening sequences and the appropriate orientation of transcription factor binding. We investigated DNA bending in complexes formed by the basic region-leucine zipper domains of Fos and Jun with the DNA binding region of nuclear factor of activated T cells 1 (NFAT1) at com...

متن کامل

DNA bending by Fos-Jun and the orientation of heterodimer binding depend on the sequence of the AP-1 site.

Interactions among transcription factors that bind to separate promoter elements depend on distortion of DNA structure and the appropriate orientation of transcription factor binding to allow juxtaposition of complementary structural motifs. We show that Fos and Jun induce distinct DNA bends at different binding sites, and that heterodimers bind to AP-1 sites in a preferred orientation. Sequenc...

متن کامل

Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains.

The proteins encoded by the proto-oncogenes c-fos and c-jun (Fos and Jun, respectively) form a heterodimeric complex that regulates transcription by interacting with the DNA-regulatory element known as the activator protein 1 (AP-1) binding site. Fos and Jun are members of a family of related transcription factors that dimerize via a leucine zipper structure and interact with DNA through a bipa...

متن کامل

Yeast GCN4 as a probe for oncogenesis by AP-1 transcription factors: transcriptional activation through AP-1 sites is not sufficient for cellular transformation.

The Jun and Fos oncoproteins belong to the AP-1 family of transcriptional activators and are believed to induce cellular transformation by inappropriately activating genes involved in cell replication. To determine whether transcriptional activation through AP-1 sites is sufficient for transforming activity, we examined the properties of an autonomous and heterologous AP-1 protein, yeast GCN4, ...

متن کامل

Selective DNA bending by a variety of bZIP proteins.

We have investigated DNA bending by bZIP family proteins that can bind to the AP-1 site. DNA bending is widespread, although not universal, among members of this family. Different bZIP protein dimers induced distinct DNA bends. The DNA bend angles ranged from virtually 0 to greater than 40 degrees as measured by phasing analysis and were oriented toward both the major and the minor grooves at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 1997